

Waves

## Waves

- Transfer energy NOT matter. . .most waves created by vibrations
- Ways to classify waves:
- Transverse
- Compressional
- Mechanical
- Electromagnetic


## Transverse Waves

- The medium (what the wave is traveling through) moves perpendicular to the energy
- examples: Radio, microwaves, Infrared, Visible Light, UV, X-ray, Gamma, THE wave, water waves



## Parts of Transverse Waves



## Parts of Transverse Waves

- Crest: the maximum positive displacement
- Trough: the maximum negative displacement
- Wavelength ( $\lambda$ ): distance between successive parts of a wave: crest to crest or trough to trough
- Amplitude: distance from normal resting position to the top of the crest or the bottom of the trough.


## Compressional Waves

- (also known as longitudinal waves) the medium moves parallel to the energy.
- examples: some earthquake waves, SOUND



## Parts of Compressional Waves

- Wavelength ( $\lambda$ ): distance between successive parts of a wave: compression to compression or rarefaction to rarefaction
- Compression: area where the density and pressure of the medium are greater than normal (particles are closer together)
- Rarefaction: area where the density and pressure of the medium are less than normal. (particles are farther apart)

Parts of Compressional Waves


## Mechanical Waves

- Need a medium to travel through
- examples: water waves, sound waves, THE wave
- speed of sound $=332 \mathrm{~m} / \mathrm{s}$ (in air at $0^{\circ} \mathrm{C}$ )
- in general, as the density of the medium increases the speed of sound increases


## Electromagnetic Waves

- Created by accelerating electric charges
- Can travel through empty space.
- examples: Light (in order from long wavelength to short)
- radio, micro, IR, visible light, UV, X-ray, Gamma


## Electromagnetic Waves

- speed of light: $c=3 E 8 \mathrm{~m} / \mathrm{s}$ (ALL electromagnetic waves travel at this speed through a vacuum)
- in general, as the density of the medium increases the speed of light decreases


## Period vs Frequency

- Period - $(T)$ - The time it takes for one cycle (= how long?)
- Measured in seconds
- Frequency - (f) - The number of cycles in a given time (= how many?)
- Measured in Hertz (Hz)
- Frequency is the inverse of the Period $f=1 / T$
- The speed of a wave is constant within a medium.
- The speed can change when a wave enters a new medium
- All waves of the same type travel at the same speed
- This means wavelength is inversely proportional to frequency!
- If the wavelength increases the frequency has to decrease!
- If the wavelength decreases the frequency has to increase!


## Speed of a Wave

## Speed of a wave

- We find speed by distance divided by time.
- The same holds true for waves!
- Speed of a wave $=$ Wavelength/Period
- Speed of a wave = Wavelength*Frequency


## Wave Equation

$$
V=f \lambda
$$

- $\mathrm{v}=$ velocity ( $\mathrm{m} / \mathrm{s}$ )
- $f=$ frequency (Hertz = waves/second)
- $\lambda=$ wavelength (meters / wave)

