

SAMPLE PROBLEM

You push on a 60 kg gazelle as shown in the diagram. What is the normal force? What is the acceleration of the gazelle?

RESOLVE THE VECTOR:
$\mathrm{F}_{\mathrm{x}}=20 \cos 60^{\circ}=10 \mathrm{~N}$ (to the right)
$\mathrm{F}_{\mathrm{y}}=20 \sin 60^{\circ}=17.32 \mathrm{~N}$ (downward)

USE $\Sigma \mathrm{F}_{\mathrm{Y}}$ TO SOLVE FOR NORMAL FORCE
$F_{N}-17.32 N-588 N=60(0)$
$\mathrm{F}_{\mathrm{N}}=605.32 \mathrm{~N}$

USE $\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{x}}$ TO SOLVE FOR a
$10 \mathrm{~N}=60 \mathrm{~kg} \mathrm{a}_{\mathrm{x}}$
$\mathrm{a}=0.167 \mathrm{~m} / \mathrm{s}^{2}$
$\Sigma F_{y}: F_{N}-F_{y}-F_{g}=m a_{y}$
$\mathrm{F}_{\mathrm{N}}-17.32 \mathrm{~N}-588 \mathrm{~N}=60 \mathrm{~kg}(0)$
WRITE NET FORCE EQUATIONS FOR BOTH X AND Y DIRECTIONS

$$
\Sigma \mathrm{F}_{\mathrm{x}}: \quad \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}}
$$

$10 \mathrm{~N}=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}}$

SAMPLE

You PULL on a 60 kg gazelle as shown in the diagram. What is the normal force? What is the acceleration of the gazelle?

RESOLVE THE VECTOR:
$\mathrm{F}_{\mathrm{x}}=20 \cos 60^{\circ}=10 \mathrm{~N}$ (to the right)
$\mathrm{F}_{\mathrm{y}}=20 \sin 60^{\circ}=17.32 \mathrm{~N}$ (upward)

DRAW FBD

WRITE NET FORCE EQUATIONS FOR BOTH X AND Y DIRECTIONS

$$
\begin{gathered}
\Sigma \mathrm{F}_{\mathrm{x}}: \quad \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}} \\
10 \mathrm{~N}=60 \mathrm{~kg} \mathrm{a}_{\mathrm{x}} \\
\Sigma \mathrm{~F}_{\mathrm{y}}: \mathrm{F}_{\mathrm{N}}+\mathrm{F}_{\mathrm{y}}-\mathrm{F}_{\mathrm{g}}=\mathrm{ma}_{\mathrm{y}} \\
\mathrm{~F}_{\mathrm{N}}+17.32 \mathrm{~N}-588 \mathrm{~N}=60 \mathrm{~kg}(0)
\end{gathered}
$$

USE $\Sigma \mathrm{F}_{\mathrm{Y}}$ TO SOLVE FOR NORMAL FORCE
$\mathrm{F}_{\mathrm{N}}+17.32 \mathrm{~N}-588 \mathrm{~N}=60 \mathrm{~kg}(0)$
$\mathrm{F}_{\mathrm{N}}=570.68 \mathrm{~N}$

USE ΣF_{X} TO SOLVE FOR a

$$
10 \mathrm{~N}=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}}
$$

$$
\mathrm{a}=0.167 \mathrm{~m} / \mathrm{s}^{2}
$$

Solving Force Problems

1. Resolve the vectors.

2. Draw Free Body Diagrams (FBD).
3. Write the net force equations.
4. Plug in numbers and solve for normal force F_{N}.
5. Determine if the object will move. Is the force applied
greater than the static frictional force ($F_{x}>F_{f s}$)?
6. Use F_{x} and kinetic frictional force $\left(F_{f k}\right)$ to solve for a_{x}.
7. Use a kinematic equation as needed.

Practice

You PULL on a 120 kg box of books as shown in the diagram. What is the normal force? What is the acceleration of the box?

RESOLVE THE VECTOR:
$\mathrm{F}_{\mathrm{x}}=60 \cos 38^{\circ}=47.28 \mathrm{~N}$ (to the left)
$\mathrm{F}_{\mathrm{y}}=60 \sin 38^{\circ}=36.94 \mathrm{~N}$ (upward)

USE $\Sigma \mathrm{F}_{\mathrm{Y}}$ TO SOLVE FOR NORMAL FORCE

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{N}}+36.94 \mathrm{~N}-1176 \mathrm{~N}=120(0) \\
& \mathrm{F}_{\mathrm{N}}=1139.06 \mathrm{~N} \\
& \text { USE } \Sigma \mathrm{F}_{\mathrm{X}} \text { TO SOLVE FOR a } \\
& \qquad-47.28 \mathrm{~N}=120 \mathrm{~kg} \mathrm{a}_{\mathrm{x}} \\
& \mathrm{a}=-0.394 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

