

USE ΣF_Y TO SOLVE FOR NORMAL FORCE

 $F_N + 17.32 N - 588 N = 60 kg (0)$

 $F_N = 570.68 \text{ N}$

USE ΣF_X TO SOLVE FOR a

 $10 \text{ N} = 60 \text{kg } a_x$

 $a = 0.167 \text{ m/s}^2$

Solving Force Problems

- 1. Resolve the vectors.
- 2. Draw Free Body Diagrams (FBD).
- 3. Write the net force equations.
- 4. Plug in numbers and solve for normal force F_N.
- 5. Determine if the object will move. Is the force applied greater than the static frictional force ($F_x > F_{fs}$)?
- 6. Use F_x and kinetic frictional force (F_{fk}) to solve for a_x.
- 7. Use a kinematic equation as needed.

USE $\Sigma F_{\rm Y}$ TO SOLVE FOR NORMAL FORCE

 $F_N + 36.94 \text{ N} - 1176 \text{ N} = 120 (0)$

 $F_N = 1139.06 \text{ N}$

USE ΣF_X TO SOLVE FOR a

-47.28 N = 120kg a_x

 $a = -0.394 \text{ m/s}^2$